Communication for maths

Term 2 - week 8: On the presentation of series

Introduction

- These slides illustrate certain aspects relating to the presentation of curve sketching.
- Some relate to the presentation of all maths in general and some are specific to the presentation of curve sketching.
- Not all aspects of mathematics communication that we have studied so far will be presented here.
- Revise the slides on the previous topics where appropriate.

Use of brackets in summation expressions

- Let us have the series

$$
1^{2}+1+2^{2}+1+3^{2}+1+\cdots+n^{2}+1
$$

- Which of the following represents this series?

a)	b)
$F(n)=\sum_{k=1}^{n} k^{2}+1$	$F(n)=\sum_{k=1}^{n}\left(k^{2}+1\right)$

Use of brackets in summation expressions

- Of the following expressions, which is/are confusing and which is/are unambiguous?

c)	d)
$F(n)=\sum_{k=1}^{n}\left(k^{2}+2 k\right)$	$F(n)=\sum_{k=1}^{n} k^{2}+2 k$
e)	f)
$F(n)=\sum k^{2}+2 k r$	$F(n)=\sum 2 k r+k^{2}$

Proof of summation formulae

Reminder

- The summation formulae for arithmetic and geometric progressions are respectively:

$$
S_{n}=\frac{n}{2}[2 a+(n-1) d] \quad \text { and } \quad S_{n}=\frac{a\left(1-r^{n}\right)}{1-r}
$$

where all letters have their usual definitions.

Proof of summation formulae

Reminder

- When proving these formulae don't forget the formality of the presentation of proofs:

Claim: ---

Proof

- - -

End of proof (or Q.E.D. or $■$)

Selected methods in series.

Know your audience: Telescoping sums

- If you are writing a text book, i.e. a book for students to learn from, then crossing out terms as shown on the next slides is ok.
- The reason is that textbooks are aimed at a student audience. Textbooks are designed to help students learn mathematics they don't know, so a certain leeway is acceptable in the presentation of mathematics.

Selected methods in series.

$$
\begin{aligned}
\sum_{r=2}^{n}\left(r^{2}+1\right) r!\equiv & \sum_{r=2}^{n}[f(r)-f(r-1)] \\
\equiv & f(n)-f(n-1) \\
& +f(n-1)-f(n-2) \\
& +f(n-2)-f(n+3)
\end{aligned}
$$

Showing cancellation of terms by crossing terms out.

This is ok for textbooks whose aim is to teach.

Selected methods in series.

Know your audience: Telescoping sums

- However, it is technically not correct to cross things out, or colour-highlight things, in mathematics (this is so when writing for a professional audience).
- Hence the correct approach would be to present the mathematics in the normal way, and then explain the cancellation of terms as shown below.

Hence

$$
\begin{aligned}
\sum_{r=2}^{n}\left(r^{2}+1\right) r!\equiv & \sum_{r=2}^{n} f(r)-f(r-1) \\
\equiv & f(n)-f(n-1) \\
& +f(n-1)-f(n-2) \\
& +f(n-2)-f(n-3) \\
& +\cdots-\cdots \\
& +f(3)-f(2) \\
& +f(2)-f(1) .
\end{aligned}
$$

Since all terms, apart from the first and last, cancel we obtain

$$
\sum_{r=2}^{n}\left(r^{2}+1\right) r!\equiv f(n)-f(1)
$$

Selected methods in series.

Telescoping sums: Exercise

- See separate pdf document (Moodle and/or MS Teams) for the exercise on telescoping sums.
- In this exercise the presentation of mathematics should be aimed at a professional audience not a student audience.

Selected methods in series.

AP and GP: Exercise

- Work on A.P.s and G.P.s involves only algebra, so there is nothing about the presentation of mathematics that is specifically related to APs and GPs.
- Therefore, all the standard rules of presentation apply.
- See separate pdf document (Moodle and/or MS Teams) for the exercises on AP and/or GP.

Maclaurin and Taylor series, and the word "expand"

- We know that we can say things like "Expand $(1+x)^{n}$."
- We can now also say things like

Expand e^{x} as a Taylor series about $x=1$.
(see Friday lesson). In other words, any suitable function
can be expanded, and the word "expand" is no longer just for binomials $(1+x)^{n}$.

- At university, the word "expand" usually means

Maclaurin or Taylor (or some other) series expansion.

Maclaurin and Taylor series, and the word "represents"

How to use the word "represents"

1. "The curve $f(x)$ is positive"
2. "The curve which represents $f(x)$ is positive."
3. "The curve which represents $f(x)$ lies above the x-axis."

Maclaurin and Taylor series, and the word "represents"

In terms of Maclaurin and Taylor series we have:

1. "The Maclaurin series is the function $f(x)$."

This implies $f(x)$ is identical to the Maclaurin series for all x.
2. "The function $f(x)$ is represented by a Maclaurin series."

Yes
This implies that a function can be represented by a Maclaurin series but need not be equal to its Maclaurin series.

Maclaurin and Taylor series, and the word "represents"

In terms of Maclaurin and Taylor series we have:

- For example

$$
f(x)=e^{-1 / x^{2}} \text { for } x \neq 0
$$

can be represented as

$$
1-\frac{1}{x^{2}}+\frac{1}{2!} \frac{1}{x^{4}}-\frac{1}{3!} \frac{1}{x^{6}}+\cdots
$$

but

$$
e^{-\frac{1}{x^{2}}} \neq 1-\frac{1}{x^{2}}+\frac{1}{2!} \frac{1}{x^{4}}-\frac{1}{3!} \frac{1}{x^{6}}+\cdots
$$

